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The power to understand and predict the quantities of the world should not be restricted to those with

a freakish knack for manipulating abstract symbols.

When most people speak of Math, what they have in mind is more its mechanism than its essence. This

"Math" consists of assigning meaning to a set of symbols, blindly shuffling around these symbols

according to arcane rules, and then interpreting a meaning from the shuffled result. The process is not

unlike casting lots.

This mechanism of math evolved for a reason: it was the most efficient means of modeling quantitative

systems given the constraints of pencil and paper. Unfortunately, most people are not comfortable with

bundling up meaning into abstract symbols and making them dance. Thus, the power of math beyond

arithmetic is generally reserved for a clergy of scientists and engineers (many of whom struggle with

symbolic abstractions more than they'll actually admit).

We are no longer constrained by pencil and paper. The symbolic shuffle should no longer be taken for

granted as the fundamental mechanism for understanding quantity and change. Math needs a new

interface.

Project
Kill Math is my umbrella project for techniques that enable people to model and solve meaningful

problems of quantity using concrete representations and intuition-guided exploration. In the long term, I

hope to develop a widely-usable, insight-generating alternative to symbolic math.

Someday there will be an introductory essay on this page, and it will move you to tears. That essay is

not yet written -- it will take a lot more thinking, and a lot of examples, before I understand what I'm

trying to do well enough.

Here's what I have for you so far:

Scrubbing Calculator demonstrates a tool for exploring

practical algebraic problems without symbolic variables.

Instead of x's and y's, you connect concrete numbers and

adjust them interactively.

Interactive Exploration of a Dynamical System demonstrates a

tool for manipulating differential equations where every variable

is shown as a plot, and every parameter has a knob that can be

adjusted in realtime. This helps the user develop a sense for how

the parameters of the system influence its behavior. Go check it

out.

Simulation As A Practical Tool is the interactive essay where I

started working out the ideas behind this effort. It's a little

problematic, in that it doesn't really prove its own point, and the

examples are misleadingly literal. But it lays out the motivations and

captures the excitement pretty well, and it inspired some great

discussions and further thinking. Also I've been told the examples

are pretty.

Below is a collection of blog-quality ramblings on the topic, which I

suppose are intended more to attract like-minded people than to convince the skeptical. (The
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http://vimeo.com/23839605
http://worrydream.com/SimulationAsAPracticalTool/
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skeptical should refuse to be convinced until they see more examples.)

My plan is to collect a number of meaningful problems across different application areas and areas of

mathematics, and for each one, design a means of solving it that is line with the philosophy here, and

compare the benefits of this solution to the benefits of a conventional solution. The techniques and

design patterns that emerge during this process will, hopefully, inform a more general framework in the

long term.

As always, if you're playing with ideas along similar lines, I'd love to see what you've come up with.

A Cobbled-Together Assortment of Unconnected
Notes from Various Times and Places

Language and Visceral Interpretation (1)

The ability to understand and predict the quantities of the world is a source of great power. Currently,

that power is restricted to the tiny subset of people comfortable with manipulating abstract symbols.

By comparison, consider literacy. The ability to receive thoughts from a person who is not at the same

place or time is a similarly great power. The dramatic social consequences of the rise of literacy are well

known.

Linguistic literacy has enjoyed much more popular success than mathematical literacy. Almost all

"educated" people can read; most can write at some level of competence. But most educated people

have no useful mathematical skill beyond arithmetic.

Writing and math are both symbol-based systems. But I speculate that written language is less artificial

because its symbols map directly to words or phonemes, for which humans are hard-wired. I would

guess that reading ties into the same mental machinery as hearing speech or seeing sign language.

I don't believe we have the same innate ability for processing mathematical symbols.* Instead, we tend

to reply on implicit physical metaphors, both for the mechanics of symbol manipulation (e.g., "moving"

a term to the other side of the equation, "canceling out" two terms, etc.) and for the semantic

interpretation of the symbols (e.g., exponential "blow-up", or the "smallness" of a neglibible term). To a

certain extent, a person's mathematical skill is tied to their ability to "feel" the symbols through these

physical metaphors, and thereby make the abstract more concrete.

I believe that both of these forms of mental contortion are artifacts of pencil-and-paper technology. A

person should not be manually shuffling symbols. That should be done, at best, entirely by software, and

at least, by interactively guiding the software, like playing a sliding puzzle game. And, more

contentiously, I believe that a person should not have to imagine the interpretation of abstract symbols.

Instead, dynamic graphs, diagrams, visual models, and visual effects should provide visceral

representations. Relationships between values, exponential blow-ups and negligible terms, should be

plainly seen, not imagined.

Language and Visceral Interpretation (2)

Humans are built for language -- we're symbol-processing machines -- so I can't say "symbols bad". But

I feel that there are things that we need to see or experience in order to truly understand. And there are

things that are easy to draw or build, but impossible to describe (without years of practice in arcane

specialized languages).

I think that quantity and measure fall into that category. Reading "1m" and "1mm", versus actually

observing those two measures -- one is just numbers on a page, the other hits you viscerally. Do you

think most people understood, really felt, the difference between a $1B and a $1T bailout? Three orders

of magnitude hidden inside a symbol.

The point is that you need that visceral sense, that gut feel, to reason about a problem by intuition. Good

circuit designers can "feel" how a circuit behaves. They look at a schematic and in their mind's eye,

* Papert might disagree, and

claim that a child raised in

"Mathland", an immersive

interactive mathematical

environment that "is to math

what France is to French", would

become as fluent in symbolic

math as in language. With regard

to symbolic math, I might

respond that a child raised in

Antarctica would be quite

tolerant of the cold, but maybe

people shouldn't need that sort

of tolerance.



they see the voltage going down over here and pushing the voltage up over there, as if they were

looking at a see-saw or water pump. It requires years of practice to develop this sense, this ability to

look at symbols (in some domain) and feel what they represent.

Likewise, people used to think that reading and making sense of huge tables of numbers was an essential

skill for working with data. But then William Playfair came along and invented line graphs, and suddenly

everyone could feel data through their eyes. Their plain old monkey-eyes!

Complex numbers provide a similar example. Being able to work with complex numbers (as abstract

values) is seen as an essential skill in many scientific fields. Then David Hestenes came along and said,

"Hey, you know all your complex numbers and quaternions and Pauli matrices and other abstract funny

stuff? If you were working in the right Clifford algebra, all of that would have a concrete geometric

interpretation, and you could see it and feel it and taste it." Taste it with your monkey-mouth! Nobody

actually believed him, but I do, and I love it.

It's the responsibility of our tools to adapt inaccessible things to our human limitations, to translate into

forms we can feel. Microscopes adapt tiny things so they can be seen with our plain old eyes. Tweezers

adapt tiny things so they can be manipulated with our plain old fingers. Calculators adapt huge numbers

so they can be manipulated with our plain old brain. And I'm imagining a tool that adapts complex

situations so they can be seen, experienced, and reasoned about with our plain old brain.

Kitchen Math

In The Children's Machine, Papert describes "kitchen math". A certain recipe serves 3, but the cook is

only cooking for 2, so she needs to 2/3 all of the ingredients. The recipe calls for 3/4 cup of flour. The

cook measures out 3/4 cup of flour, spreads it into a circle on the counter, takes a 1/3 piece out of the

circle and puts it back into the bag. That's 2/3 of 3/4.

Some people would be horrified that this person can't multiply fractions, but I find the solution

delightful. It's concrete, visual, tangible, direct. As opposed to the conventional approach of "canceling

out the 3 on the top and bottom", which has no physical meaning whatsoever in this case.

I want to create an environment for turbo-charged kitchen math.

Mathematical Arts

This project is not an attack on practicing math for its own sake. I have no problem with mathematics

for recreation, or as an art form. All my life I've studied math out of personal interest; I play with math

all the time. I resonate deeply with Lockhart's lament, and I'm amused by the work of Vi Hart, Mike

Keith, and so on. There's beauty in patterns and rules; there's challenge in discovering it; that's all fine.

My problem is when mindless tradition and lack of imagination compel us to use this art form, with all

of its archaic restrictions, as a practical tool.

Consider martial arts, another art form that evolved out of immediately practical needs. Like math,

people might practice martial arts for exercise (physical or mental), for the challenge and reward of

mastering a skill, for its elegance and beauty, or as a social activity. Unlike math, we recognize that the

martial arts are no longer suitable for their original practical purpose, now that technological progress

has yielded more wonderously effective ways of smashing people.

(Also unlike math, we don't force-feed twelve years of lessons to every child on the planet, and those

who are unskilled at the art aren't made to feel ashamed and vaguely inferior.)

A Possibly Embarrassing Personal Anecdote

When I was in high school, I would go down to the local college a few times a week to learn about

differential equations. One day, after the instructor solved a second-order equation, say:

http://www.amazon.com/dp/0465010636
http://www.maa.org/devlin/LockhartsLament.pdf
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http://www.cadaeic.net/


he threw out an offhand question: "Why do you think the solution has two arbitrary constants?"

I was confused by the question. It does because it does, I thought. I could see how the solution would

have two degrees of freedom, that made sense to me, but it never occurred to me that there was some

deeper cause.

The instructor continued, "Because you're integrating twice." And then moved on to some other subject

while my young brain twisted into a knot.

I had never considered solving a differential equation to be integration. It didn't feel like integration. I

knew what integration felt like -- it was adding things up, a little tank filling up with water:

And I knew what an equation felt like -- it was a balancing act, a little scale coming to rest:

I went on to college, and grad school, and an engineering career, and I must have solved, what,

hundreds of differential equations? Thousands? Obviously I understood the formal relationship between

differential equations and integration. But I don't know that I ever felt it.

Then, one day, I was reading (for fun) Strogatz's phenomenal book, Nonlinear Dynamics and Chaos.

And he asked, how do you solve this differential equation:

And he said, well, you don't. You can't. It's nonlinear. Our symbol-pushing tricks don't work here. But

what you can do is decompose it into a system of first-order equations:

and then plot trajectories in phase space, and get a feel for how the system behaves:

http://www.amazon.com/dp/0738204536


And there it was. There was the integration. At each point, the little cursor was nudged horizontally by

one differential, and nudged vertically by the other differential, and thereby integrated its way around

phase space like a little LOGO turtle.

Why did I spend my entire career working in a medium where I couldn't see what I was integrating? It

seemed to me that analyzing a differential equation without exploring it in phase space was like

analyzing a piece of sheet music without actually hearing it.

I thought about my instructor's question from years ago: "Why does the solution have two arbitrary

constants?" And it was immediately obvious: you have to choose a starting point for the trajectory. The

two constants correspond to the x and y where you drop your turtle and start integrating. I had solved

"initial value problems" for years. But I had never been able to, literally, point my finger at the initial

value.

Education and Command Lines

When these notes were first published, I received a lot of enthusiastic responses. However, the majority

of respondents seemed to think I wanted to reform math education. Even though education was

mentioned nowhere, except for a brief tangential section which said the project wasn't about education.

I found this puzzling. If I were suggesting a new interface for driving a car (say, if I claimed the steering

wheel was outdated, and should be replaced with a Wiimote), nobody would think I was talking about

driver education. Nobody would even mention education. They would just talk about whether that was

a good way to drive a car.

But call for a new interface for understanding quantity, and everyone starts talking about classrooms and

curricula.

This is especially odd considering that best tool available today for exploring real-life questions of

quantity and change is the spreadsheet. And if I were to demand a new interface for the spreadsheet,

again, nobody would bring up education.

(This recasting into the educational domain also happened to Interactive Exploration of a Dynamical

System. I'm sure I could have done a better job of framing it: "This is a prototype of a tool for engineers

and scientists to model and explore the systems that they are engineering and sciencing." But I thought

the framing was closer to that than, "This is a pedagogical visualization of the Lotka-Volterra equation."

The majority of respondents wanted canned visualizations of specific problems, like Wolfram

Demonstrations. I kind of felt as if I had demonstrated a fancy new non-stick frying pan, and everyone

came up afterwards asking for some of those delicious scrambled eggs.)

If I had to guess why "math reform" is misinterpreted as "math education reform", I would speculate that

school is the only contact that most people have had with math. Like school-physics or school-

chemistry, math is seen as a subject that is taught, not a tool that is used. People don't actually use

math-beyond-arithmetic in their lives, just like they don't use the inverse-square law or the periodic

table.

Which is the premise of this project, of course -- people don't use math. But everyone seems to believe,

if only math were taught better, they would use it! And my position (and the entire point of the project)

is: No. Teach the current mathematical notation and methods any way you want -- they will still be

unusable. They are unusable in the same way that any bad user interface is unusable -- they don't show

the user what he needs to see, they don't match how the user wants to think, they don't show the user

what actions he can take.

They are unusable in the same way that the UNIX command line is unusable for the vast majority of

people. There have been many proposals for how the general public can make more powerful use of

computers, but nobody is suggesting we should teach everyone to use the command line. The good

proposals are the opposite of that -- design better interfaces, more accessible applications, higher-level

abstractions. Represent things visually and tangibly.

I had a somewhat similar

experience with the

Fourier/Laplace transforms,

which I learned as formal tools

for solving differential equations.

It wasn't until three years later

that I learned what they meant --

how they represented frequency,

growth, and decay -- how they

turned the signal inside-out and

showed it to you from an entirely

new perspective. That was one

of the most exciting moments of

my life. I'm still in love with the

Fourier transform; I still consider

it to be one of the most

fascinating intellectual constructs

I know.

http://vimeo.com/23839605/
http://demonstrations.wolfram.com/


And so it should be with math. Mathematics, as currently practiced, is a command line. We need a

better interface.

Things Other People Have Said

Oliver Steele: email

Anything that remains abstract (in the sense of not concrete) is hard to think about... I think that

mathematicians are those who succeed in figuring out how to think concretely about things that are

abstract, so that they aren't abstract anymore. And I believe that mathematical thinking encompasses

the skill of learning to think of an abstract thing concretely, often using multiple representations –

this is part of how to think about more things as "things". So rather than avoiding abstraction, I think

it's important to absorb it, and concretize the abstract... One way to concretize something abstract

might be to show an instance of it alongside something that is already concrete.

David Hestenes and Garret Sobczyk: Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics

Klein's seminal analysis of the structure and history of mathematics brings to light two major

processes by which mathematics grows and becomes organized... The one emphasizes algebraic

structure while the other emphasizes geometric interpretation. Klein's analysis shows one process

alternately dominating the other in the historical development of mathematics. But there is no

necessary reason that the two processes should operate in mutual exclusion. Indeed, each process is

undoubtedly grounded in one the two great capacities of the human mind: the capacity for lanuage

and the capacity for spatial perception. From the psychological point of view, then, the fusion of

algebra with geometry is so fundamental that one could well say, 'Geometry without algebra is

dumb! Algebra without geometry is blind!'

David Hestenes: Reforming the Mathematical Language of Physics

Mathematics is taken for granted in the physics curriculum -- a body of immutable truths to be

assimilated and applied. The profound influence of mathematics on our conceptions of the physical

world is never analyzed. The possibility that mathematical tools used today were invented to solve

problems in the past and might not be well suited for current problems is never considered...

One does not have to go very deeply into the history of physics to discover the profound influence of

mathematical invention. Two famous examples will suffice to make the point: The invention of

analytic geometry and calculus was essential to Newton’s creation of classical mechanics. The

invention of tensor analysis was essential to Einstein’s creation of the General Theory of Relativity...

The point I wish to make by citing these two examples is that without essential mathematical

concepts the two theories would have been literally inconceivable. The mathematical modeling tools

we employ at once extend and limit our ability to conceive the world. Limitations of mathematics are

evident in the fact that the analytic geometry that provides the foundation for classical mechanics is

insufficient for General Relativity. This should alert one to the possibility of other conceptual limits in

the mathematics used by physicists.

Richard Hamming: The Unreasonable Effectiveness of Mathematics

The Postulates of Mathematics Were Not on the Stone Tablets that Moses Brought Down from Mt.

Sinai. It is necessary to emphasize this. We begin with a vague concept in our minds, then we create

various sets of postulates, and gradually we settle down to one particular set. In the rigorous

postulational approach, the original concept is now replaced by what the postulates define. This

makes further evolution of the concept rather difficult and as a result tends to slow down the

evolution of mathematics. It is not that the postulation approach is wrong, only that its arbitrariness

should be clearly recognized, and we should be prepared to change postulates when the need

becomes apparent.

Richard Hamming: The Art of Doing Science and Engineering

When digital filters first arose they were viewed merely as a variant of the classical analog filters;

http://www.amazon.com/dp/9027725616
http://geocalc.clas.asu.edu/pdf/OerstedMedalLecture.pdf
http://www.lecb.ncifcrf.gov/~toms/Hamming.unreasonable.html
http://www.amazon.com/dp/B000P2XFPA


people did not see them as essentially new and different. This is exactly the same mistake which was

made endlessly by people in the early days of computers. I was told repeatedly, until I was sick of

hearing it, computers were nothing more than large, fast desk calculators. "Anything you can do by a

machine you can do by hand.", so they said. This simply ignores the speed, accuracy, reliability, and

lower costs of the machines vs. humans. Typically a single order of magnitude change (a factor of

10) produces fundamentally new effects, and computers are many, many times faster than hand

computations. Those who claimed there was no essential difference never made any signficicant

contributions to the development of computers...

This is a common, endlessly made, mistake; people always want to think that something new is just

like the past -- they like to be comfortable in their minds as well as their bodies -- and hence they

prevent themselves from making any significant contribution to the new field being created under

their noses.

Steven Strogatz: Nonlinear Dynamics and Chaos

http://www.amazon.com/dp/0738204536



